Skip to main content

Chairman, Vijai Electricals Ltd


Chairman, Vijai Electricals Ltd

In 1973, Dasari Jai Ramesh, an engineering graduate, started Vijai Electricals to manufacture transformers, with a bank loan of Rs1.36 lakh and 10 employees. Now, it is India’s largest maker of transformers, with a turnover of Rs1,400 crore in 2006 and customers across 20 countries.


Vijai Electricals has executed electrification projects in more than 7,600 villages across India, including Bihar, Uttar Pradesh, West Bengal and Karnataka. It has been working to produce energy-efficient equipment and is involved in upgrading distribution systems to minimize transmission losses. Vijai Electricals has invested around Rs500 crore, and will be putting in more than  100-150 crore this year to expand its product range. “We plan to join the $1 billion club in the next three years," says Ramesh.

Ramesh hails from a middle-class family in Andhra Pradesh’s Krishna district. “I know how powerless villagers are because of a lack of resources," he says. “I realized that what can be produced economically is not only good for my customer, but also for society." And then began the focus on making economical energy-efficient products. Ramesh sees a tremendous opportunity to increase profits while being useful to society.

Comments

Popular posts from this blog

11KV ABC cable current carrying capacity

Let us discuss about Size and current carrying capacity of a  11 KV 3x120 mm2 AB Cable. Before getting answer we have to know about Technical Specification.The Technical Specification as below. TECHNICAL SPECIFICATION FOR 11KV AB Cable( AERIAL BUNCHED CABLES)  and XLPE insulated (CROSSED LINKED POLYETHYLENE DRY GAS CURED/WET CURED) FOR OVERHEAD LINES. 1. SCOPE  This specification covers requirements of XLPE insulated, 11 KV Aerial Bunched Cables for overhead lines. 2. COMPOSITION OF THE CABLE The composite cable shall comprise three single-core cables twisted around a bare aluminium alloy messenger wire, which will carry the weight of the cable. 3. RATED VOLTAGE The rated voltage of the cables shall be 6.35KV/11KV and the maximum operating voltage shall be 12 KV. 4. APPLICABLE STANDARDS Unless otherwise stipulated in this Specification, the following Standards shall be applicable: i) IS: 7098 (Part-II) - 1985 – Cross linked Polyethylene Insulated PVC Sheathed Cables ii) IS: 8130-1984 -

Minimum Electrical Clearance

Minimum Electrical Clearance As Per BS:162. INDOOR Voltage in KV Phase to earth in mm Phase to phase in mm 0.415 15.8 19.05 0.600 19.05 19.05 3.3 50.8 50.8 6.6 63.5 88.9 11 76.2 127.0 15 101.6 165.1 22 139.7 241.3 33 222.25 355.6 Minimum Electrical Clearance As Per BS:162. OUTDOOR Voltage in KV Phase to earth in mm Phase to phase in mm 6.6 139.7 177.8 11 177.8 228.6 22 279.4 330.2 33 381 431.8 66 685.8 787.4 110 863.6 990.6 132 1066.8 1219.2 220 1778 2057.4   Minimum Working Clearance: OUTDOOR SWITCHYARD Voltage in KV To ground in mm Between section(mm) 11 2750 2500 33 3700 2800 66 4000 3000 132 4600 3500 220 5500 4500   Minimum Ground Clearance As Per IE-1956(Rule 77) Voltage in KV To ground in mtr 132 6.10 220 7.00 400 8.84 800 12.40     Minimum Clearance between Lines Crossing Each Other (IE-1957) System Voltage 132KV 220KV 400KV 800KV Low & Medium 3.05 4.58 5.49 7.94 11-66KV 3.05 4.58 5.49 7.94 132KV 3.05 4.58 5.49 7.94 220KV 4.58 4.58 5.49 7.94 400KV 5.49 5.49 5.49 7.94 800KV

How to calculate Voltage Regulation of 11 KV line

  Voltage Regulation: It is a measure of change in the voltage magnitude between sending end and receiving end of a component, such as Transmission or Distribution line. Voltage regulation Formula: %VR= Vs-Vr    x  100                 Vs Permissible Voltage Regulation in distrDistrib System: Permissible Voltage Regulation as per REC: Part of Distribution System Urban Area (%) Suburban Area (%) Rural Area (%) Up to Transformer 2.5 2,5 2.5 Up to Service Main 3 2 0.0 Up to Service Drop 0.5 0.5 0.5 Total 6.0 5.0 3.0 Voltage variations in 33 kV and 11kV feeders should not exceed the following limits at the farthest end under peak load conditions and normal system operation regime. Above 33kV (-) 12.5% to (+) 10%. Up to 33kV (-) 9.0% to (+) 6.0%. Low voltage (-) 6.0% to (+) 6.0% Sometimes it can be difficult to achieve the required voltage, especially in rural areas . Part of the reason for the high voltage drop in rural areas it due to the fact that these areas are usually further was from