Skip to main content

How to calculate Voltage Regulation of 11 KV line

 Voltage Regulation:It is a measure of change in the voltage magnitude between sending end and receiving end of a component, such as Transmission or Distribution line.



Voltage regulation Formula:

%VR=Vs-Vr    x  100 
               Vs
Permissible Voltage Regulation in distrDistrib System:


Permissible Voltage Regulation as per REC:

Part of Distribution System

Urban Area (%)

Suburban Area (%)

Rural Area (%)

Up to Transformer

2.5

2,5

2.5

Up to Service Main

3

2

0.0

Up to Service Drop

0.5

0.5

0.5

Total

6.0

5.0

3.0

Voltage variations in 33 kV and 11kV feeders should not exceed the following limits at the farthest end under peak load conditions and normal system operation regime.

  • Above 33kV (-) 12.5% to (+) 10%.
  • Up to 33kV (-) 9.0% to (+) 6.0%.
  • Low voltage (-) 6.0% to (+) 6.0%

Sometimes it can be difficult to achieve the required voltage, especially in rural areas . Part of the reason for the high voltage drop in rural areas it due to the fact that these areas are usually further was from the electricity supplies. Therefore, the power lines have to be extended over long distances, resulting in higher line losses. Power theft is a further factor which can contribute to voltage drops in rural areas. In these cases, 11/0.433 kV may be used in place of normal 11/0.4 kV distribution transformers .


Method to calculate % Voltage Regulation:

Method -1(Distance base )

Voltage Drop  = ( (√3x(RCosΦ+XSinΦ)x I ) / (No of Conductor/Phase x1000))x Length of Line

Method-2(Load base):

% Voltage Regulation =(I x (RcosǾ+XsinǾ)x Length ) / No of Cond.per Phase xV (P-N))x100
P-phase
N-neutral

Explained:

Calculate Voltage drop and % Voltage Regulation at Trail end of following 11 KV Distribution system , System have ACSR DOG Conductor (AI 6/4.72, GI7/1.57),Current Capacity of ACSR Conductor =205Amp,Resistance =0.2792Ω and Reactance =0 Ω, Permissible limit of % Voltage Regulation at Trail end is 5%.







Method 1:

Voltge drop at Load A

  • Load Current at Point A (I) = KW / 1.732xVoltxP.F
  • Load Current at Point A (I) =1500 / 1.732x11000x0.8 = 98 Amp.
  • Required No of conductor / Phase =98 / 205 =0.47 Amp =1 No
  • Voltage Drop at Point A = ( (√3x(RCosΦ+XSinΦ)xI ) / (No of Conductor/Phase x1000))x Length of Line
  • Voltage Drop at Point A =((1.732x (0.272×0.8+0x0.6)x98) / 1×1000)x1500) = 57 Volt
  • Receiving end Voltage at Point A = Sending end Volt-Voltage Drop= (1100-57) = 10943 Volt.
  • % Voltage Regulation at Point A = ((Sending end Volt-Receiving end Volt) / Sending end Volt) x100
  • % Voltage Regulation at Point A = ((11000-10943) / 11000)x100 = 0.51%
  • % Voltage Regulation at Point A =0.51 %

Voltage drop at Load B

  • Load Current at Point B (I) = KW / 1.732xVoltxP.F
  • Load Current at Point B (I) =1800 / 1.732x11000x0.8 = 118 Amp.
  • Distance from source= 1500+1800=3300 Meter.
  • Voltage Drop at Point B = ( (√3x(RCosΦ+XSinΦ)xI ) / (No of Conductor/Phase x1000))x Length of Line
  • Voltage Drop at Point B =((1.732x (0.272×0.8+0x0.6)x98) / 1×1000)x3300) = 266 Volt
  • Receiving end Voltage at Point B = Sending end Volt-Voltage Drop= (1100-266) = 10734 Volt.
  • % Voltage Regulation at Point B= ((Sending end Volt-Receiving end Volt) / Sending end Volt) x100
  • % Voltage Regulation at Point B= ((11000-10734) / 11000)x100 = 2.41%
  • % Voltage Regulation at Point B =2.41 %

Voltage drop at Load C

  • Load Current at Point C (I) = KW / 1.732xVoltxP.F
  • Load Current at Point C (I) =2000 / 1.732x11000x0.8 = 131 Amp
  • Distance from source= 1500+1800+2000=5300 Meter.
  • Voltage Drop at Point C = ( (√3x(RCosΦ+XSinΦ)xI ) / (No of Conductor/Phase x1000))x Length of Line
  • Voltage Drop at Point C =((1.732x (0.272×0.8+0x0.6)x98) / 1×1000)x5300) = 269 Volt
  • Receiving end Voltage at Point C = Sending end Volt-Voltage Drop= (1100-269) = 10731 Volt.
  • % Voltage Regulation at Point C= ((Sending end Volt-Receiving end Volt) / Sending  end Volt) x100
  • % Voltage Regulation at Point C= ((11000-10731) / 11000)x100 = 2.44%
  • % Voltage Regulation at Point C =2.44 %

Here Trail end Point % Voltage Regulation is 2.41% which is in permissible limit.

Method-2

  • Load Current at Point A (I) = KW / 1.732xVoltxP.F
  • Load Current at Point A (I) =1500 / 1.732x11000x0.8 = 98 Amp.
  • Distance from source= 1.500 Km.
  • Required No of conductor / Phase =98 / 205 =0.47 Amp =1 No
  • Voltage Drop at Point A = (I x (RcosǾ+XsinǾ)x Length ) / V (Phase-Neutral))x100
  • Voltage Drop at Point A =((98x(0.272×0.8+0x0.6)x1.5) / 1×6351) = 0.52%
  • % Voltage Regulation at Point A =0.52 %

Voltage drop at Load B

  • Load Current at Point B (I) = KW / 1.732xVoltxP.F
  • Load Current at Point B (I) =1800 / 1.732x11000x0.8 = 118 Amp.
  • Distance from source= 1500+1800=3.3Km.
  • Required No of conductor / Phase =118 / 205 =0.57 Amp =1 No
  • Voltage Drop at Point B = (I x (RcosǾ+XsinǾ)x Length ) / V (Phase-Neutral))x100
  • Voltage Drop at Point B =((118x(0.272×0.8+0x0.6)x3.3)/1×6351) = 1.36%
  • % Voltage Regulation at Point A =1.36 %

Voltage drop at Load C

  • Load Current at Point C (I) = KW / 1.732xVoltxP.F
  • Load Current at Point C (I) =2000 / 1.732x11000x0.8 = 131Amp.
  • Distance from source= 1500+1800+2000=5.3Km.
  • Required No of conductor / Phase =131/205 =0.64 Amp =1 No
  • Voltage Drop at Point C = (I x (RcosǾ+XsinǾ)x Length ) / V (Phase-Neutral))x100
  • Voltage Drop at Point C =((131x(0.272×0.8+0x0.6)x5.3)/1×6351) = 2.44%
  • % Voltage Regulation at Point A =2.44 %

Here Trail end Point % Voltage Regulation is 2.44% which is in permissible limit.

Simple and practical method to measure Voltage Regulation in a distribution system:

1St measure staring end voltage of a DTR as Vs and then trail end voltage of a DTR as Vr then Voltage Regulation easily calculated.

For Vs=(Vry+Vyb+Vrb)/3

          Vr=(Vry+Vyb+Vrb)/3

  Vry:-Phase voltage between r and y phase



How to improve Voltage Regulation in a distribution line:


1.Use of generator voltage regulators
2. Application of voltage-regulating equipment in the distribution substations;
3. Application of capacitors in the distribution substation
4. Balancing of the loads on the primary feeders
5. Increasing of feeder conductor size
6. Changing of feeder sections from single-phase to multiphase
7. Transferring of loads to new feeders
8. Installing of new substations and primary feeders
9. Increase of primary voltage level
10. Application of voltage regulators on the primary feeders
11. Application of shunt capacitors on the primary feeders

12. Application of series capacitors on the primary feeders.
13.By preventing theft Voltage Regulation can be impoved and theft can be minimized by using of insulation on Conductor.
14.Now many projects like HVDS ,IPDS running for volatage regulation improvement.
15. In these cases, 11/0.433 kV may be used in place of normal 11/0.4 kV distribution transformers .









Comments

Popular posts from this blog

11KV ABC cable current carrying capacity

Let us discuss about Size and current carrying capacity of a  11 KV 3x120 mm2 AB Cable. Before getting answer we have to know about Technical Specification.The Technical Specification as below. TECHNICAL SPECIFICATION FOR 11KV AB Cable( AERIAL BUNCHED CABLES)  and XLPE insulated (CROSSED LINKED POLYETHYLENE DRY GAS CURED/WET CURED) FOR OVERHEAD LINES. 1. SCOPE  This specification covers requirements of XLPE insulated, 11 KV Aerial Bunched Cables for overhead lines. 2. COMPOSITION OF THE CABLE The composite cable shall comprise three single-core cables twisted around a bare aluminium alloy messenger wire, which will carry the weight of the cable. 3. RATED VOLTAGE The rated voltage of the cables shall be 6.35KV/11KV and the maximum operating voltage shall be 12 KV. 4. APPLICABLE STANDARDS Unless otherwise stipulated in this Specification, the following Standards shall be applicable: i) IS: 7098 (Part-II) - 1985 – Cross linked Polyethylene Insulated PVC Sheathed Cables ii) IS: 8130-1984 -

Minimum Electrical Clearance

Minimum Electrical Clearance As Per BS:162. INDOOR Voltage in KV Phase to earth in mm Phase to phase in mm 0.415 15.8 19.05 0.600 19.05 19.05 3.3 50.8 50.8 6.6 63.5 88.9 11 76.2 127.0 15 101.6 165.1 22 139.7 241.3 33 222.25 355.6 Minimum Electrical Clearance As Per BS:162. OUTDOOR Voltage in KV Phase to earth in mm Phase to phase in mm 6.6 139.7 177.8 11 177.8 228.6 22 279.4 330.2 33 381 431.8 66 685.8 787.4 110 863.6 990.6 132 1066.8 1219.2 220 1778 2057.4   Minimum Working Clearance: OUTDOOR SWITCHYARD Voltage in KV To ground in mm Between section(mm) 11 2750 2500 33 3700 2800 66 4000 3000 132 4600 3500 220 5500 4500   Minimum Ground Clearance As Per IE-1956(Rule 77) Voltage in KV To ground in mtr 132 6.10 220 7.00 400 8.84 800 12.40     Minimum Clearance between Lines Crossing Each Other (IE-1957) System Voltage 132KV 220KV 400KV 800KV Low & Medium 3.05 4.58 5.49 7.94 11-66KV 3.05 4.58 5.49 7.94 132KV 3.05 4.58 5.49 7.94 220KV 4.58 4.58 5.49 7.94 400KV 5.49 5.49 5.49 7.94 800KV